
1

9.3.5.4 Denotational and connotational subtypes (EXPRESS-2)
When an entity instance is created it identifies those entity datatypes it is
an instance of, and unless the datatype information is changed by using
the extend or drop built in actions it remains an instance of those
datatypes. Some subtypes only add constraints to the information held
for the supertype. An entity instance which is created as an instance of
the supertype but which conforms to the constraints of the subtype
cannot be used as the subtype. A connotational subtype allows an
instance of a particular supertype to be used as if it were a subtype
instance also even though the instance is not declared to be of that
particular subtype. The connotational subtype construct directs
an information base to treat a supertype instance as if it were a subtype
instance if it meets all constraints specified in the subtype. If
CONNOTATIONAL is not specified then the supertype instance
may not be considered as an instance of the subtype, irrespective of any
constraints specified in the subtype. In such a case the subtype is said to
be denotational and the instance must be instantiated as the subtype to be
an instance of the subtype.

Rules and restrictions:

a) A CONNOTATIONAL subtype shall not contain explicit attribute
declarations;

b) A CONNOTATIONAL subtype may not be constrained to be either
ABSTRACT or TOTAL_OVER.

c) An instance of a supertype of a denotational subtype may not be
considered to be an instance of the denotational subtype unless explicitly
instantiated to be.

EXAMPLE In the following example two subtypes are defined, one a
connotational subtype, the other a denotational subtype.

2

ENTITY person;
name : personal_name;
age : INTEGER;

END_ENTITY;

ENTITY male
SUBTYPE OF (person); ...

END_ENTITY;

ENTITY pensioner
CONNOTATIONAL SUBTYPE OF (person);

WHERE
old: age > 65;

END_ENTITY;

FUNCTION pension (subject : pensioner) : REAL;
...

END_FUNCTION;

LOCAL
 fred : male := person('Fred', 70)||male();
 (* Fred may be used as a pensioner since it meets the constraints
 of the connotational subtype pensioner *)
 bert : male := person('Bert', 65)||male();
END_LOCAL;
...
income := pension(fred);
 -- valid, Fred meets the pensioner constraints.
income := pension(bert);
 (* invalid, Bert cannot be considered a pensioner, and therefore
 cannot be passed as a parameter to the pension function,
 which returns indeterminate (?).*)

----------- p21 --------
#55=MALE('Mike',70);
#66=MALE('Jack',65);

3

Sample AP
ARM

ARM AIM

4

Merged ARM + AIM

(DER)

CONNOTATIONAL

CONNOTATIONAL

Advantages of CONNOTATIONAL SUBTYPE for Modules
• a mapping table would no longer be needed

• the ARM-Express would directly be integrated in the AIM. ARM

entities would become connotational subtypes of AIM entities.

• ARM attributes would become derived attributes.

• As a result ARM and AIM would be in one schema.

• a huge amount of redundancy in the mapping tables could be

eliminated.

• The result (part21) would still be fully compatible with what we

have today

• No identity problems like in the EXPRESS-X "views"

• Only a one page extension in the EXPRESS-Amendment is needed.

CONNOTATIONAL SUBTYPE is a challenge
take advantage of it

